Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Vijayakumar N. Sonar, ${ }^{\text {a }}$ Sean Parkin ${ }^{\text {b }}$ and Peter A. Crooks ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, and ${ }^{\text {b }}$ Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA

Correspondence e-mail: pcrooks@uky.edu

Key indicators

Single-crystal X-ray study
$T=90 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.034$
$w R$ factor $=0.077$
Data-to-parameter ratio $=10.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

(Z)-2-(4-Methoxybenzylidene)-1-azabicyclo[2.2.2]-octan-3-one

The title compound, $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$, was prepared by the basecatalyzed reaction of 4-methoxybenzaldehyde with 1-aza-bicyclo[2.2.2]octan-3-one. The configuration about the olefinic bond connecting the methoxyphenyl and 1-aza-bicylo[2.2.2]octan-3-one moieties is Z.

Comment

The title compound, (I), was prepared by the base-catalyzed condensation of 4-methoxybenzaldehyde with 1-aza-bicyclo[2.2.2]octan-3-one, to afford (I) as a single geometrical isomer. In order to confirm the double-bond geometry, and to determine how the molecular conformation in the crystal structure is affected by the position of the para-methoxy group, the X-ray analysis of this positional isomer has been carried out and the results are presented here. This is a companion study together with the previous communication on the isomeric 2-methoxy analogue (Sonar et al., 2006).

(I)

Fig. 1 illustrates an ellipsoid plot of (I), with the atomnumbering scheme; selected geometric parameters are listed in Table 1. The configuration about the olefinic bond connecting the 4 -methoxyphenyl and 1-azabicylo[2.2.2]octan-3-one moieties is Z. The double bond has a nearly planar atomic arrangement, since the r.m.s. deviation from the mean plane passing through atoms $\mathrm{N} 1, \mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 7$ and C 1 for (I) is 0.0197 (11) Å.

There are no significant differences in the geometric parameters of (Z)-2-(2-methoxy-benzylidene)-1-azabicyclo[2.2.2]-octan-3-one and (Z)-2-(4-methoxy-benzylidene)-1-azabicyclo[2.2.2]octan-3-one. This suggests that the position of the methoxy group does not have much influence on the overall molecular conformation in the 2 - and 4 -positional isomers.

Experimental

Compound (I) was prepared following the method described previously for the 2 -methoxy analogue (Sonar et al., 2006), but utilizing 4-methoxybenzaldehyde in place of 2-methoxy-

Received 15 December 2005 Accepted 20 December 2005 Online 7 January 2006

Figure 1
A view of the molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
benzaldehyde. Spectroscopic analysis: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right.$, p.p.m.): 1.99-2.04 (td, 4H), 2.59-2.62 ($p, 1 \mathrm{H}$), 2.93-3.03 ($m, 2 \mathrm{H}$), 3.09-3.19 (m, $2 \mathrm{H}), 3.83(s, 3 \mathrm{H}), 6.89(d d, 2 \mathrm{H}), 6.98(s, 1 \mathrm{H}), 8.02(d d, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right.$, p.p.m.): $26.4,40.6,47.8,55.5,114.1,125.1,127.0,134.1$, 143.0, 160.8, 206.4.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$
$M_{r}=243.30$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.8425(2) \AA$
$b=9.9252(3) \AA$
$c=21.3739(7) \AA$
$V=1239.43(7) \AA^{3}$
$Z=4$
$D_{x}=1.304 \mathrm{Mg} \mathrm{m}^{-3}$

> Mo $K \alpha$ radiation
> Cell parameters from 1641 \quad reflections
> $\theta=1.0-27.5^{\circ}$
> $\mu=0.09 \mathrm{~mm}^{-1}$
> $T=90.0(2) \mathrm{K}$
> Block, colourless
> $0.30 \times 0.20 \times 0.15 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector
diffractometer
ω scans

Absorption correction: multi-scan
(SCALEPACK; Otwinowski \&
Minor, 1997)
$T_{\text {min }}=0.975, T_{\text {max }}=0.987$
10079 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.077$
$S=1.04$
1664 reflections
165 parameters
H -atom parameters constrained
1664 independent reflections
1323 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-7 \rightarrow 7$
$k=-12 \rightarrow 12$
$l=-27 \rightarrow 27$

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0341 P)^{2}\right. \\
\quad \\
\quad+0.1346 P] \\
\quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.20 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.18 \mathrm{e}^{-3} \\
\text { Extinction correction: SHELXL97 } \\
\quad \text { (Sheldrick, 1997) } \\
\text { Extinction coefficient: } 0.013
\end{array}{ }^{(2)}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$).

$\mathrm{C} 1-\mathrm{C} 7$	$1.463(2)$	$\mathrm{O} 2-\mathrm{C} 15$	$1.429(2)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.447(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.336(2)$
$\mathrm{O} 1-\mathrm{C} 9$	$1.227(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.485(2)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.369(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.508(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$123.56(17)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$121.39(17)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$118.35(17)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$113.57(15)$
$\mathrm{C} 4-\mathrm{O} 2-\mathrm{C} 15$	$117.91(16)$	$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 8$	$124.48(17)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 1$	$130.35(17)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$110.75(15)$
$\mathrm{C} 15-\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	$-5.4(3)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$160.91(19)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	$-21.9(3)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 1$	$0.0(3)$

In the absence of significant anomalous dispersion effects, Friedel pairs were averaged. H atoms were positioned geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-0.99 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1995); software used to prepare material for publication: SHELX97-2 (Sheldrick, 1997) and local procedures.

This investigation was supported by National Institute of Alcohol Abuse and Alcoholism Grant AA12600.

References

Nonius (1999). COLLECT. Nonius, BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick (1995). XP in SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and SHELX97-2. University of Göttingen, Germany.
Sonar, V. N., Parkin, S. \& Crooks, P. A. (2006). Acta Cryst. E62, o393o395.

